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N u m e r i c a l  results  are presen ted  f o r  the coeff icients in the nonl inear  inverse radiat ive-conduct ive  heat  

transfer problem. 

Calculation of temperature fields in absorbing, emitting, and scattering media necessitates joint solution 

of the heat conduction and radiation transfer equations [1 ]. The complexity of the initial set of integrodifferential 

equations as well as the absence of reliable data on optical and thermophysical properties necessitates use of various 

approximate methods for solution of this class of problems. 

In the present work we give results of numerical solution of a simplified mathematical model consisting of 

a nonlinear heat conduction equation with effective thermophysical coefficients that take account of energy transfer 

by conduction and radiation in the semitransparent material under consideration. 

The effective coefficients are found by solving the one-dimensional inverse problem. Additional information 

on the temperature distribution in time at some points of the specimen u (x  k, t), k -- 1, M, Xk E (0, L), 

t 1 _< t _< t2 is found from solution of the direct radiative-conductive heat transfer problem. 

The medium is assumed to be absorbing and radiating, gray; the boundaries, diffusely radiating and 
reflecting; the plane-parallel case is considered. 

With the assumptions made, the radiative-conductive heat transfer problem can be expressed by the 

following set of integrodifferential equations [1 ]: 

ou o (; tog 
Cp Ox - Ox [ Ox - ~ -1 f I/~' dp'  
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(x ,  t) E f~ = { ( x ,  t ) [ O < x < L ,  tl < t <_ t2) ,  

U ( x ,  O) = g o ( x ) ,  O <_ x < L ,  (2) 
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The problem of determining the thermophysical and optical properties of the material from rigorous solution 

of inverse problem (1)-(7) is rather complex since even the direct problem in a simplified formulation requires 

cumbersome computations and substantial machine time. Therefore, in what follows the process considered is 

assumed to be described approximately by the following model: 

Cer(U) 0~" O (2ef(~]) OU ) 
ot - ox ~ , ( x ,  t) ~ ~ ,  (8)  

~r (x, 0) = T (x), 0 < x < L ,  (9) 

_ 2e f (~/) OU x=0 (10) -~x = ql(t) ' tl -< t _< t2, 

OU (11) 
- 2 e f ( ~ / ) ~  x=L = q2( / ) '  tl < t--< t 2 .  

The effective coefficients Cef(U) and2ef(~3 are found from the condition of the minimum residue functional 

M t2 
J = E f  

k=l t 1 
[U (Xk, t) -- ~J (Xk, t) ]2 d t ,  (12)  

where U(xk, t) and U(xk, t) are the temperatures at the point Xk at time t, obtained from solution of problems 

(1)-(7) and (8)-(11), respectively. 

The problem of finding minimum functional (12) is solved in the finite-dimensional space R m, consisting 

of vectors ~ whose elements are parameters of the piecewise-linear approximation of the unknown coefficients 

Cef(L r) and .~.ef(~/). The vector ~*, giving a minimum for functional (12), is found by the conjugate gradient method. 

Iteration regularization [2 ] is used. As a criterion characterizing uniqueness and the level of conditionality of the 

problem, we use a quantity equal to the ratio of the variance of the vector of parameters ~ to the temperature 

variance at the observation points and calculated by the formula [3 ] 

_ (13)  
Oa Oa T 

The problem posed was solved numerically. As parameters for the model problem, the following optical and 

thermophysical properties of optical glass were used [4 ]: p = 2720 kg/m3; 2 = 0.73 W/(m.  deg) ; C = 795 J/(kg.  deg) ; 
L = 10 -2 m; R i = 0.8; e i = 0.2; i = 1, 2; fl = 50 m -1. The boundary conditions: T(x) = 293 K, ql (t) = 0, q2(t) = 2- 104 
W/m 2. 

Numerical experiments were carried out for temperatures ranging from 980 to 1300 K. For refinement of 

the structure of model (8)-(11), three variants of the inverse problem were considered: 
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TABLE 1. Results of Comparison of the Variants by the Functional Value, Conditionality Level, and Number of 
Iterations 

Variant J S N 
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Fig. 1. Temperature distribution U (K) over the coordinate x. 102 (m) at 

different times: 1) t = 740, 2) 1080 sec; solid lines show numerical solution 

of problem (8)-(11); dashed lines refer to numerical solution problem (1)-(7) 

with radiation energy transfer neglected. 
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Fig. 2. Plot of the effective thermal conductivity 2el (W/(m. deg)) (a) and heat 

capacity Cef (J/m 3. deg) (b) versus the temperature U (K). 

1) the coefficients Cef(~/) and 2el(L/) were reconstructed jointly; 

2) Cef(~3 was reconstructed at fixed 2ef(U), equal to the thermal conductivity 2; 

3) )lef was reconstructed under the condition Cef = Cp. 
In Table 1 three variants of the inverse problem are compared by the value of the functional J, the 

conditionality level S, and the iteration number N. It can be seen from Table 1 that the best approximation for the 

functional is given by variant 2; however, the parameters are sensitive to input data errors and the convergence to 
the solution is worse than for the other variants. Variant 1 is optimal in accuracy and stability of the solution in 

the case where the effective thermal conductivity and heat capacity are reconstructed simultaneously. For this 
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variant these coefficients were determined within 8%. The difference in the distribution of the temperature 
calculated from the solution of initial problem (1)-(7) and simplified problem (8)-(11) did not exceed 6-7%. 

Results of numerical calculations of unsteady-state temperature fields and effective thermophysical 
properties are given in Figs. 1-3. Figure 1 shows the effect of radiative energy transfer on the temperature 
distribution in the material. Predicted effective thermophysical coefficients are given in Figs. 2 and 3. 

The present numerical experiments have shown that effective thermophysical coefficients, found by solving 
the inverse heat conduction problem, can be used with satisfactory accuracy for solution of one-dimensional 
radiative-conductive heat transfer problems in the formulation (1)-(7). 

N O T A T I O N  

u, absolute temperature, K; C, specific heat, J / (kg.K);  p, density, kg/m3; 2, thermal conductivity, 
W/(m" deg); I, integral radiation intensity, W/(m a-ster); ~, cosine of the angle between the chosen coordinate 

direction and the radiation direction; r ,  integral absorptivity, m-l; ei, integral radiation coefficient, i - 1, 2; Ri, 
integral reflection index; n, refractivity; or, Stefan-Boltzmann constant; 2el, effective thermal conductivity, 
W/(m- deg); Cef, effective heat capacity, J / (m 3" K); q, heat flux density, W/m 2. 
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